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The Cloud computing paradigm has revolutionised the computer science horizon during the past decade
and has enabled the emergence of computing as the fifth utility. It has captured significant attention of
academia, industries, and government bodies. Now, it has emerged as the backbone of modern economy
by offering subscription-based services anytime, anywhere following a pay-as-you-go model. This has in-
stigated (1) shorter establishment times for start-ups, (2) creation of scalable global enterprise applications,
(3) better cost-to-value associativity for scientific and high-performance computing applications, and (4) dif-
ferent invocation/execution models for pervasive and ubiquitous applications. The recent technological de-
velopments and paradigms such as serverless computing, software-defined networking, Internet of Things,
and processing at network edge are creating new opportunities for Cloud computing. However, they are
also posing several new challenges and creating the need for new approaches and research strategies, as
well as the re-evaluation of the models that were developed to address issues such as scalability, elastic-
ity, reliability, security, sustainability, and application models. The proposed manifesto addresses them by
identifying the major open challenges in Cloud computing, emerging trends, and impact areas. It then of-
fers research directions for the next decade, thus helping in the realisation of Future Generation Cloud
Computing.

CCS Concepts: • General and reference → Surveys and overviews; • Computer systems organiza-

tion → Cloud computing; • Information systems → Cloud based storage; Data centers; • Security and

privacy → Security services; • Networks → Cloud computing; • Software and its engineering → Cloud

computing;

Additional Key Words and Phrases: Cloud computing, scalability, sustainability, InterCloud, data manage-
ment, Cloud economics, application development, Fog computing, serverless computing
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1 INTRODUCTION

Cloud computing has shaped the way in which software and IT infrastructure are used by con-
sumers and triggered the emergence of computing as the fifth utility [24]. Since its emergence,
industry organisations, governmental institutions, and academia have embraced it and its adop-
tion has seen a rapid growth. This paradigm has developed into the backbone of modern economy
by providing on-demand access to subscription-based IT resources, resembling not only the way
in which basic utility services are accessed but also the reliance of modern society on them. Cloud
computing has enabled new businesses to be established in a shorter amount of time, has facilitated
the expansion of enterprises across the globe, has accelerated the pace of scientific progress, and
has led to the creation of various models of computation for pervasive and ubiquitous applications,
among other benefits.

Until now, there have been three main service models that have fostered the adoption of Clouds,
namely Software, Platform, and Infrastructure as a Service (SaaS, PaaS, and IaaS). SaaS offers the
highest level of abstraction and allows users to access applications hosted in Cloud data cen-
tres (CDC), usually over the Internet. This, for instance, has allowed businesses to access soft-
ware in a flexible manner by enabling unlimited and on-demand access to a range of ready-to-use
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applications. SaaS has also allowed organisations to avoid incurring in internal or direct expenses,
such as license fees and IT infrastructure maintenance. PaaS is tailored for users that require more
control over their IT resources and offers a framework for the creation and deployment of Cloud
applications that includes features such as programming models and auto-scaling. This, for ex-
ample, has allowed developers to easily create applications that benefit from the elastic Cloud
resource model. Finally, IaaS offers access to computing resources, usually by leasing Virtual Ma-
chines (VMs) and storage space. This layer is not only the foundation for SaaS and PaaS, but has
also been the pillar of Cloud computing. It has done so by enabling users to access the IT infras-
tructure they require only when they need it, to adjust the amount of resources used in a flexible
way, and to pay only for what has been used, all while having a high degree of control over the
resources.

1.1 Motivation and Goals of the Manifesto

Throughout the evolution of Cloud computing and its increasing adoption, not only have the afore-
mentioned models advanced and new ones emerged, but also the technologies in which this par-
adigm is based (e.g., virtualization) have continued to progress. For instance, the use of novel
virtualization techniques such as containers that enable improved utilisation of the physical re-
sources and further hide the complexities of hardware is becoming increasingly widespread, even
leading to a new service model being offered by providers known as Container as a Service (CaaS).
There has also been a rise in the type and number of specialised Cloud services that aid industries
in creating value by being easily configured to meet specific business requirements. Examples of
these are emerging, easy-to-use, Cloud-based data analytics services and serverless architectures.

Another clear trend is that Clouds are becoming increasingly geographically distributed to sup-
port emerging application paradigms. For example, Cloud providers have recently started extend-
ing their infrastructure and services to include edge devices for supporting emerging paradigms
such as the Internet of Things (IoT) and Fog computing. Fog computing aims at moving decision
making operations as close to the data sources as possible by leveraging resources on the edge
such as mobile base stations, gateways, network switches and routers, thus reducing response
time and network latencies. Additionally, as a way of fulfilling increasingly complex requirements
that demand the composition of multiple services and as a way of achieving reliability and im-
proving sustainability, services spanning across multiple geographically distributed CDCs have
also become more widespread.

The adoption of Cloud computing will continue to increase and support for these emerging
models and services is of paramount importance. In 2016, the IDG’s Cloud adoption report found
that 70% of organisations have at least one of their applications deployed in the Cloud and that the
numbers are growing [89]. In the same year, the IDC’s (International Data Corporation) World-
wide Semiannual Public Cloud Services Spending Guide [88] reported that Cloud services were
expected to grow from $70 billion in 2015 to more than $203 billion in 2020, an annual growth rate
almost seven times the rate of overall IT spending growth. This extensive usage of Cloud com-
puting in various emerging domains is posing several new challenges and is forcing us to rethink
the research strategies and re-evaluate the models that were developed to address issues such as
scalability, resource management, reliability, and security for the realisation of next-generation
Cloud computing environments [149].

This comprehensive manifesto brings these advancements together and identifies open chal-
lenges that need to be addressed for realising the Future Generation Cloud Computing. Given that
rapid changes in computing/IT technologies in a span of 4–5 years are common, and the focus of
the manifesto is for the next decade, we envision that identified research directions get addressed
and will have impact on the next two or three generations of utility-oriented Cloud computing
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Fig. 1. Components of the Cloud computing paradigm.

technologies, infrastructures, and their applications’ services. The manifesto first discusses major
challenges in Cloud computing, investigates their state-of-the-art solutions, and identifies their
limitations. The manifesto then discusses the emerging trends and impact areas, that further drive
these Cloud computing challenges. Having identified these open issues, the manifesto then offers
comprehensive future research directions in the Cloud computing horizon for the next decade.
Figure 1 illustrates the main components of the Cloud computing paradigm and positions the
identified trends and challenges, which are discussed further in the next sections.

The rest of the article is organised as follows: Section 2 discusses the state of the art of the
challenges in Cloud computing and identifies open issues. Section 3 along with online Appendix A
discusses the emerging trends and impact areas related to the Cloud computing horizon. Section 4
along with online Appendix B provides a detailed discussion about the future research directions
to address the open challenges of Cloud computing. In the process, the section also mentions how
the respective future research directions will be guided and influenced by the emerging trends.
Section 5 provides a conclusion for the manifesto.

2 CHALLENGES: STATE OF THE ART AND OPEN ISSUES

As Cloud computing became popular, it has been extensively utilised in hosting a wide variety
of applications. It posed several challenges (shown within the inner ring in Figure 2) such as is-
sues with sustainability, scalability, security, and data management among the others. Over the
past decade, these challenges were systematically addressed and the state of the art in Cloud
computing has advanced significantly. However, there remains several issues open, as sum-
marised in the outer ring of Figure 2. The rest of the section identifies and details the challenges
in Cloud computing and their state of the art, along with the limitations driving their future
research.
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Fig. 2. Cloud computing challenges, state of the art, and open issues.

2.1 Scalability and Elasticity

Cloud computing differs from earlier models of distributed computing such as grids and clusters,
in that it promises virtually unlimited computational resources on demand. At least two clear
benefits can be obtained from this promise: First, unexpected peaks in computational demand
do not entail breaking service level agreements (SLAs) due to the inability of a fixed computing
infrastructure to deliver users’ expected quality of service (QoS), and, second, Cloud computing
users do not need to make significant up-front investments in computing infrastructure but can
rather grow organically as their computing needs increase and only pay for resources as needed.
The first (QoS) benefit of the Cloud computing paradigm can only be realised if the infrastructure
supports scalable services, whereby additional computational resources can be allocated, and new
resources have a direct, positive impact on the performance and QoS of the hosted applications.
The second (economic) benefit can only be realised if the infrastructure supports elastic services,
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whereby allocated computational resources can follow demand and by dynamically growing and
shrinking prevent over- and under-allocation of resources.

The research challenges associated with scalable services can be broken into hardware, mid-
dleware, and application levels. Cloud computing providers must embrace parallel computing
hardware including multi-core, clusters, accelerators such as Graphics Processing Units (GPUs)
[160], and non-traditional (e.g., neuromorphic and future quantum) architectures, and they need
to present such heterogeneous hardware to IaaS Cloud computing users in abstractions (e.g., VMs,
containers) that while providing isolation, also enable performance guarantees. At the middleware
level, programming models and abstractions are necessary, so that PaaS Cloud computing appli-
cation developers can focus on functional concerns (e.g., defining map and reduce functions) while
leaving non-functional concerns (e.g., scalability, fault tolerance) to the middleware layer [92]. At
the application level, new generic algorithms need to be developed so that inherent scalability limi-
tations of sequential deterministic algorithms can be overcome; these include asynchronous evolu-
tionary algorithms, approximation algorithms, and online/incremental algorithms (see e.g., Refer-
ence [43]). These algorithms may trade off precision or consistency for scalability and performance.

Ultimately, the scalability of the Cloud is limited by the extent to which individual components,
namely compute, storage and interconnects scale. Computation has been limited by the end of
scaling of both Moore’s law (doubling the number of transistors every 1.5 year) and Dennard
scaling (“the power use stays in proportion with area: both voltage and current scale (downward)
with length”). As a consequence, the new computational units do not scale any more, nor does
the power use scale. This directly influences the scaling of computation performance and cost of
the Cloud. Research in new technologies, beyond Complementary Metal-Oxide-Semiconductor,
is necessary for further scaling. Similar is true for memory. Dynamic Random-Access Memory is
limiting the cost and scaling of existing computers, and new non-volatile technologies are being
explored that will introduce additional scaling of load-store operating memory while reducing the
power consumption. Finally, the photonic interconnects are the third pillar that enables the so
called silicon photonics to propagate photonic connections into the chips improving performance,
increasing scale, and reducing power consumption.

However, the research challenges associated with elastic services include the ability to accu-
rately predict computational demand and performance of applications under different resource
allocations [91, 141], the use of these workload and performance models in informing resource
management decisions in middleware [93], and the ability of applications to scale up and down,
including dynamic creation, mobility, and garbage collection of VMs, containers, and other re-
source abstractions [147]. While virtualization (e.g., VMs) has achieved steady maturity in terms
of performance guarantees rivalling native performance for CPU-intensive applications, ease of
use of containers (especially quick restarts) has led to the adoption of containers by the developers
community [51]. Programming models that enable dynamic reconfiguration of applications sig-
nificantly help in elasticity [146], by allowing middleware to move computations and data across
Clouds, between public and private Clouds, and closer to edge resources as needed by future Cloud
applications running over sensor networks such as the IoT.

In summary, scalability and elasticity provide operational capabilities to improve performance
of Cloud computing applications in a cost-effective way, which are yet to be fully exploited. How-
ever, resource management and scheduling mechanisms need to be able to strategically use these
capabilities.

2.2 Resource Management and Scheduling

The scale of modern CDCs has been rapidly growing and as of today they contain comput-
ing and storage devices in the range of tens to hundreds of thousands, hosting complex Cloud
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applications and relevant data. This makes the adoption of effective resource management and
scheduling policies important to achieve high scalability and operational efficiency.

Nowadays, IaaS providers mostly rely on either static VM provisioning policies, which allocate
a fixed set of physical resources to VMs using bin-packing algorithms, or dynamic policies, capable
of handling load variations through live VM migrations and other load balancing techniques [116].
These policies can either be reactive or proactive, and typically rely on knowledge of VM resource
requirements, either user-supplied or estimated using monitoring data and forecasting.

Resource management methods are also important for PaaS and SaaS providers to help manag-
ing the type and amount of resources allocated to distributed applications, containers, web-services
and micro-services. Policies available at this level include for example: (1) auto-scaling techniques,
which dynamically scale up and down resources based on current and forecasted workloads;
(2) resource throttling methods, to handle workload bursts, trends, smooth auto-scaling transients,
or control usage of preemptible VMs (e.g., micro VMs); (3) admission control methods, to handle
peak load and prioritize workloads of high-value customers; (4) service orchestration and work-
flow schedulers, to compose and orchestrate workloads, possibly specialised for the target domain
(e.g., scientific data workflows [115]), which make decisions based on their cost-awareness and
the constraint requirements of tasks; and (5) multi-Cloud load balancers, to spread the load of an
application across multiple CDCs.

The area of resource management and scheduling has spawned a large body of research, and
some recent surveys include References [7, 112, 117, 136]. However, several challenges and limi-
tations still remain. For example, existing management policies tend to be intolerant to inaccurate
estimates of resource requirements, calling for studying novel tradeoffs between policy optimality
and its robustness to inaccurate workload information [94]. Further, demand estimation and work-
load prediction methods can be brittle and it remains an open question whether Machine Learning
(ML) and Artificial Intelligence (AI) methods can fully address this shortcoming [26]. Another fre-
quent issue is that resource management policies tend to focus on optimising specific metrics and
resources, often lacking a systematic approach to co-existence in the same environment of mul-
tiple control loops, to ensure fair resource access across users, and to holistically optimise across
layers of the Cloud stack. Novel resource management and scheduling methods for hybrid Clouds
and federated Clouds also need to be devised [91]. Risks related to the interplay between security
and resource management are also insufficiently addressed in current research work.

2.3 Reliability

Reliability is another critical challenge in Cloud computing environments. Data centres hosting
Cloud computing consist of highly interconnected and interdependent systems. Because of their
scale, complexity, and interdependencies, Cloud computing systems face a variety of reliability-
related threats such as hardware failures, resource missing failures, overflow failures, network
failures, timeout failures, and flaws in software being triggered by environmental change. Some
of these failures can escalate and devastatingly impact system operation, thus causing critical fail-
ures [76]. Moreover, a cascade of failures may be triggered leading to large-scale service disrup-
tions with far-reaching consequences [96]. As organisations are increasingly interested in adapting
Cloud computing technology for applications with stringent reliability assurance and resilience re-
quirements [134], there is an urgent demand for new ways to provision Cloud services with assured
performance and resilience to deal with all types of independent and correlated failures [41]. More-
over, the mutual impact of reliability and energy efficiency of Cloud systems is one of the current
research challenges [152].

Although reliability in distributed computing has been studied before [126], standard fault-
tolerance and reliability approaches cannot be directly applied in Cloud computing systems. The
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scale and expected reliability of Cloud computing are increasingly important but hard to analyse
due to the range of inter-related characteristics, e.g., their massive-scale, service sharing models,
wide-area network, and heterogeneous software/hardware components. Previously, independent
failures have mostly been addressed separately; however, the investigation into their interplay
has been completely ignored [73]. Furthermore, since Cloud computing is typically more service
oriented rather than resource oriented, reliability models for traditional distributed systems can-
not be directly applied to Cloud computing. So, existing state-of-the-art Cloud environments lack
thorough service reliability models, automatic reliability-aware service management mechanisms,
and failure-aware provisioning policies.

2.4 Sustainability

Sustainability is the greatest challenge of our century, and ICT in general [61] utilises today close
to 10% of all electricity consumed worldwide, resulting in a CO2 impact that is comparable to that
of air travel. In addition to the energy consumed to operate ICT systems, we know that substantial
electricity is used to manufacture electronic components and then decommission them after the
end of their useful lifetime; the amount of energy consumed in this process can be four- to fivefold
greater than the electricity that this equipment will consume to operate during its lifetime.

CDC deployments until recently have mainly focused on high performance and have not paid
enough attention to energy consumption. Thus, today a typical CDC’s energy consumption is
similar to that of 25,000 households [103], while the total number of operational CDCs worldwide
is 8.5 million in 2017 according to IDC. Indeed, according to Greenpeace, Cloud computing
worldwide consumes more energy than most countries and only the four largest economies
(USA, China, Russia, and Japan) surpass Clouds in their annual electricity usage. As the energy
consumption, and the relative cost of energy in the total expenditures for the Cloud, rapidly
increases, not enough research has gone into minimising the amount of energy consumed by
Clouds, information systems that exploit Cloud systems, and networks [21, 125].

However, networks and the Cloud also have a huge potential to save energy in many areas
such as smart cities or to be used to optimise the mix of renewable and non-renewable energy
worldwide [135]. However, the energy consumption of Clouds cannot be viewed independently
of the QoS that they provide, so that both energy and QoS must be managed in conjunction. In-
deed, for a given computer and network technology, reduced energy consumption is often coupled
with a reduction of the QoS that users will experience. In some cases, such as critical or even life-
threatening real-time needs, such as Cloud support of search and rescue operations, hospital oper-
ations or emergency management, a Cloud cannot choose to save energy in exchange for reduced
QoS.

Current Cloud systems and efforts have in the past primarily focused on consolidation of VMs
for minimising energy consumption of servers [13]. But other elements of CDC infrastructures,
such as cooling systems (close to 35% of energy) and networks, which must be very fast and ef-
ficient, also consume significant energy that needs to be optimised by proper scheduling of the
traffic flows between servers (and over high-speed networks) inside the data centre [68].

Because of multi-core architectures, novel hardware based sleep-start controls and clock speed
management techniques, the power consumption of servers increasingly depends, and in a non-
linear manner, on their instantaneous workload. Thus new ML-based methods have been devel-
oped to dynamically allocate tasks to multiple servers in a CDC or in the Fog [155] so that a
combination of violation of SLA, which are costly to the Cloud operator and inconvenient for the
end user, and other operating costs including energy consumption, are minimised. Holistic tech-
niques must also address the QoS effect of networks such as packet delays on overall SLA, and the
energy effects of networks for remote access to CDC [154]. The purpose of these methods is to

ACM Computing Surveys, Vol. 51, No. 5, Article 105. Publication date: November 2018.



A Manifesto for Future Generation Cloud Computing 105:9

provide online automatic, or autonomic and self-aware methods to holistically manage both QoS
and energy consumption of Cloud systems.

Recent work [159] has also shown that deep learning with neural networks can be effectively
applied in experimental but realistic settings so that tasks are allocated to servers in a manner
that optimises a prescribed performance profile that can include execution delays, response times,
system throughput, and energy consumption of the CDC. Another approach that maximises the
sustainability of Cloud systems and networks involves rationing the energy supply [60] so that
the CDC can modulate its own energy consumption and delivered QoS in response, dynamically
modifying the processors’ variable clock rates as a function of the supply of energy. It has also
been suggested that different sources of renewable and non-renewable energy can be mixed [62].

2.5 Heterogeneity

Public Cloud infrastructure has constantly evolved in the past decade. This is because service
providers have increased their offerings while continually incorporating state-of-the-art hardware
to meet customer demands and maximise performance and efficiency. This has resulted in an in-
herently heterogeneous Cloud with heterogeneity at three levels.

The first is at the VM level, which is due to the organisation of homogeneous (or near homo-
geneous; for example, same processor family) resources in multiple ways and configurations. For
example, homogeneous hardware processors with N cores can be organised as VMs with any sub-
set or multiples of N cores. The second is at the vendor level, which is due to employing resources
from multiple Cloud providers with different hypervisors or software suites. This is usually seen
in multi-Cloud environments [109]. The third is at the hardware architecture level, which is due
to employing both CPUs and hardware accelerators, such as GPUs and Field Programmable Gate
Arrays (FPGAs) [137].

The key challenges that arise due to heterogeneity in the Cloud are twofold. The first challenge
is related to resource and workload management in heterogeneous environments. The state of
the art in resource management focuses on static and dynamic VM placement and provisioning
using global or local scheduling techniques that consider network parameters and energy con-
sumption [35]. Workload management is underpinned by benchmarking techniques that are used
for workload placement and scheduling techniques. Current benchmarking practices are reason-
ably mature for the first level of heterogeneity and are developing for the second level [98, 148].
However, significant research is still required to predict workload performance given the hetero-
geneity at the hardware architecture level. Despite advances, research in both heterogeneous re-
source management and workload management on heterogeneous resources remain fragmented,
since they are specific to their level of heterogeneity and do not work across the VM, vendor, and
hardware architecture levels. It is still challenging to obtain a general purpose Cloud platform that
integrates and manages heterogeneity at all three levels.

The second challenge is related to the development of application software that is compatible
with heterogeneous resources. Currently, most accelerators require different (and sometimes ven-
dor specific) programming languages. Software development practices for exploiting accelerators
for example additionally require low-level programming skills and has a significant learning curve.
For example, CUDA or OpenCL are required for programming GPUs. This gap between hardware
accelerators and high-level programming makes it difficult to easily adopt accelerators in Cloud
software. It is recognised that abstracting hardware accelerators under middleware will reduce
opportunities for optimising the source code for maximising performance. When the Cloud ser-
vice offering is only the “infrastructure,” the onus is on individual developers to provide source
code that is targeted to the hardware environment. However, when services, such as “software”
and “platforms” are offered on the Cloud, the onus is not on the developer, since the aim of these
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services is to abstract the low-level technicalities away from the user. Therefore, it becomes nec-
essary that the hardware is abstracted via a middleware for applications to exploit. Certainly, this
comes at the expense of performance and fewer opportunities to optimise the code. Hence, there
is a tradeoff between performance and ease of use, when moving from VMs at the infrastructure
level and on to using software and services available higher up in the computing stack. One open
challenge in this area is developing software that is agnostic of the underlying hardware and can
adapt based on the available hardware [100].

2.6 Interconnected Clouds

Although interconnection of Clouds was one of the earliest research problems that was identified
in Cloud computing [14, 23, 131], Cloud interoperation continues to be an open issue, since the
field has rapidly evolved over the last half decade. Cloud providers and platforms still operate in
silos, and their efforts for integration usually target their own portfolio of services. Cloud inter-
operation should be viewed as the capability of public Clouds, private Clouds, and other diverse
systems to understand each other’s system interfaces, configurations, forms of authentication and
authorisation, data formats, and application initialisation and customisation [139].

Within the broader concept of interconnected Clouds, there are a number of methods that can be
used to aggregate the functionalities and services of disparate Cloud providers and/or data centres.
These techniques vary on who are the players that engage in the interconnections, its objectives,
and the level of transparency in the aggregation of services offered to users [144].

Existing public Cloud providers offer proprietary mechanisms for interoperation that exhibit
important limitations as they are not based on standards and open-source, and they do not inter-
operate with other providers. Although there are multiple efforts for standardisation, such as Open
Grid Forum’s Open Cloud Computing Interface, Storage Networking Industry Association’s Cloud
Data Management Interface, Distributed Management Task Force’s (DMTF) Cloud Infrastructure
Management Interface, DMTF’s Open Virtualization Format, IEEE’s InterCloud and National In-
stitute of Standards and Technology’s (NIST) Federated Cloud, the interfaces of existing Cloud
services are not standardised and different providers use different APIs, formats and contextual-
ization mechanisms for comparable Cloud services.

Broadly, the approaches can be classified as federated Cloud computing if the interconnection
is initiated and managed by providers (and usually transparent to users) as InterCloud or hybrid
Clouds if initiated and managed by users or third parties on behalf of the users.

Federated Cloud computing is considered as the next step in the evolution of Cloud computing
and an integral part of the new emerging Edge and Fog computing architectures. The federated
Cloud model is gaining increasing interest in the IT market, since it can bring important benefits
for companies and institutions, such as resource asset optimisation, cost savings, agile resource
delivery, scalability, high availability and business continuity, and geographic dispersion [23].

In the area of InterClouds and hybrid Clouds, Moreno et al. notice that a number of approaches
were proposed to provide “the necessary mechanisms for sharing computing, storage, and networking
resources” [119]. This happens for two reasons. First, companies would like to use as much as
possible of their existing in house infrastructures, for both economic and compliance reasons, and
thus they should seamlessly integrate with public Cloud resources used by the company. Second,
for all the workloads that are allowed to go to Clouds or for resource needs exceeding on premise
capabilities, companies are seeking to offload as much of their applications as possible to the public
Clouds, driven not only by the economic benefits and shared resources, but also due to the potential
freedom to choose among multiple vendors on their terms.

State-of-the-art projects such as Aneka [20] have developed middleware and library solutions
for integration of different resources (VMs, databases, etc.). However, the problem with such
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approaches is that they need to operate in the lowest common denominator among the services
offered by each provider, and this leads to suboptimal Cloud applications or support at specific
service models.

Regardless of the particular Cloud interconnection pattern in place, interoperability and porta-
bility have multiple aspects and relate to a number of different components in the architecture of
Cloud computing and data centres, each of which needs to be considered in its own right. These
include standard interfaces, portable data formats and applications, and internationally recognised
standards for service quality and security. The efficient and transparent provision, management
and configuration of cross-site virtual networks to interconnect the on-premise Cloud and the ex-
ternal provider resources is still an important challenge that is slowing down the full adoption of
this technology [87].

As Cloud adoption grows and more applications are moved to the Cloud, the need for satisfac-
tory solutions is likely to grow. Challenges in this area concern how to go beyond the minimum
common denominator of services when interoperating across providers (and thus enabling richer
Cloud applications); how to coordinate authorisation, access, and billing across providers; and how
to apply InterCloud solutions in the context of Fog computing and other emerging trends.

2.7 Empowering Resource-Constrained Devices

Cloud services are relevant not only for enterprise applications, but also for the resource con-
strained devices and their applications. With the recent innovation and development, mobile de-
vices such as smartphones and tablets, have achieved better CPU and memory capabilities. They
also have been integrated with a wide range of hardware and sensors such as camera, GPS (Global
Positioning System), accelerometer, and so on. In addition, with the advances in 4G, 5G, and ubiq-
uitous WiFi, the devices have achieved significantly higher data transmission rates. This progress
has led to the usage of these devices in a variety of applications such as mobile commerce, mobile
social networking and location based services. While the advances in the mobiles are significant
and they are also being used as service providers, they still have limited battery life and when
compared to desktops have limited CPU, memory and storage capacities, for hosting/executing
resource-intensive tasks/applications. These limitations can be addressed by harnessing external
Cloud resources, which led to the emergence of Mobile Cloud paradigm.

Mobile Cloud has been studied extensively during the past years [45] and the research mainly
focused at two of its binding models, the task delegation and the mobile code offloading [53]. With
the task delegation approach, the mobile invokes web services from multiple Cloud providers, and
thus faces issues such as Cloud interoperability and requirement of platform specific API. Task del-
egation is accomplished with the help of middlewares [53]. Mobile code offloading, on the other
hand, profiles and partitions the applications, and the resource-intensive methods/operations are
identified and offloaded to surrogate Cloud instances (Cloudlets/swarmlets). Typical research chal-
lenges here include developing the ideal offloading approach, identifying the resource-intensive
methods, and studying ideal decision mechanisms considering both the device context (e.g., battery
level and network connectivity) and Cloud context (e.g., current load on the Cloud surrogates) [52,
161]. While applications based on task delegation are common, mobile code offloading is still facing
adaptability challenges [52].

Correspondingly, IoT has evolved as “web 4.0 and beyond” and “Industry 4.0,” where physical
objects with sensing and actuator capabilities, along with the participating individuals, are
connected and communicate over the Internet [140]. There are predictions that billions of such
devices/things will be connected using advances in building innovative physical objects and com-
munication protocols [48]. Cloud primarily helps IoT by providing resources for the storage and
distributed processing of the acquired sensor data, in different scenarios. While this Cloud-centric
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IoT model [75, 140] is interesting, it ends up with inherent challenges such as network latencies
for scenarios with sub-second response requirements. An additional aspect that arises with IoT
devices is their substantial energy consumption, which can be mitigated by the use of renewable
energy [62], but this in turn raises the issue of QoS as the renewable energy sources are generally
sporadic. To address these issues and to realise the IoT scenarios, Fog computing is emerging
as a new trend to bring computing and system supervisory activities closer to the IoT devices
themselves, which is discussed in detail in online Appendix A.2. Fog computing mainly brings
several advantages to IoT devices, such as security for edge devices, cognition of situations, agility
of deployment, ultra-low latency, and efficiency on cost and performance, which are all critical
challenges in the IoT environments.

2.8 Security and Privacy

Security is a major concern in ICT systems and Cloud computing is no exception. Here, we provide
an overview of the existing solutions addressing problems related to the secure and private man-
agement of data and computations in the Cloud (confidentiality, integrity, and availability) along
with some observations on their limitations and challenges that still need to be addressed.

With respect to the confidentiality, existing solutions typically encrypt the data before storing
them at external Cloud providers [80]. Encryption, however, limits the support of query evalua-
tion at the provider side. Solutions addressing this problem include the definition of indexes, which
enable (partial) query evaluation at the provider side without the need to decrypt data, and the use
of encryption techniques that support the execution of operations or the evaluation of conditions
directly over encrypted data. Indexes are metadata that preserve some of the properties of the
attributes on which they have been defined and can then be used for query evaluation (e.g., Ref-
erences [2, 37, 80]). The definition of indexes must balance precision and privacy: Precise indexes
offer efficient query execution but may lead to improper exposure of confidential information. En-
cryption techniques supporting the execution of operations on encrypted data without decryption
are, for example, Order Preserving Encryption that allows the evaluation of range conditions (e.g.,
References [2, 153]), and fully (or partial) homomorphic encryption that allows the evaluation of
arbitrarily complex functions on encrypted data (e.g., References [18, 70, 71]). Taking these encryp-
tion techniques as basic building blocks, some encrypted database systems have been developed
(e.g., References [6, 128]), which support SQL queries over encrypted data.

Another interesting problem related to the confidentiality and privacy of data arises when con-
sidering modern Cloud-based applications (e.g., applications for accurate social services, better
healthcare, detecting fraud, and national security) that explore data over multiple data sources with
cross-domain knowledge. A major challenge of such applications is to preserve privacy, as data
mining tools with cross-domain knowledge can reveal more personal information than anticipated,
therefore prohibiting organisations to share their data. A research challenge is the design of the-
oretical models and practical mechanisms to preserve privacy for cross-domain knowledge [163].
Furthermore, the data collected and stored in the Cloud (e.g., data about the techniques, incen-
tives, internal communication structures, and behaviours of attackers) can be used to verify and
evaluate new theory and technical methods (e.g., References [83, 143]). A current booming trend
is to use ML methods in information security and privacy to analyse Big Data for threat analysis,
attack intelligence, virus propagation, and data correlations [82].

Many approaches protecting the confidentiality of data rely on the implicit assumption that any
authorised user, who knows the decryption key, can access the whole data content. However, in
many situations there is the need of supporting selective visibility for different users. Works address-
ing this problem are based on selective encryption and on attribute-based encryption (ABE) [151].
Policy updates are supported, for example, by over-encryption, which, however, requires the help
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of the Cloud provider, and by the Mix&Slice approach [10], which departs from the support of
the Cloud provider and uses different rounds of encryption to provide complete mixing of the
resource. The problem of selective sharing has been considered also in scenarios where different
parties cooperate for sharing data and to perform distributed computations.

Alternative solutions to encryption have been adopted when associations among the data are
more sensitive than the data themselves [33]. Such solutions split data in different fragments stored
at different servers or guaranteed to be non linkable. They support only certain types of sensitive
constraints and queries and the computational complexity for retrieving data increases.

While all solutions described above successfully provide efficient and selective access to out-
sourced data, they are exposed to attacks exploiting frequency of accesses to violate data and
users privacy. This problem has been addressed by Private Information Retrieval (PIR) techniques,
which operate on publicly available data, and, more recently by privacy-preserving indexing tech-
niques based on, for example, Oblivious RAM, B-tree data structures, and binary search tree [44].
This field is still in its infancy and the development of practical solutions is an open problem.

With respect to the integrity, different techniques such as digital signatures, Provable Data Pos-
session, Proof Of Retrievability, let detecting unauthorised modifications of data stored at an ex-
ternal Cloud provider. Verifying the integrity of stored data by its owner and authorised users
is, however, only one of the aspects of integrity. When data can change dynamically, possibly by
multiple writers, and queries need to be supported, several additional problems have to be ad-
dressed. Researchers have investigated the use of authenticated data structures (deterministic ap-
proaches) or insertion of integrity checks (probabilistic approaches) [39] to verify the correctness,
completeness, and freshness of a computation. Both deterministic and probabilistic approaches
can represent promising directions but are limited in their applicability and integrity guarantees
provided.

With respect to the availability, some proposals have focused on the problem of how a user
can select the services offered by a Cloud provider that match user’s security and privacy require-
ments [38]. Typically, the expected behaviours of Cloud providers are defined by SLAs stipulated
between a user and the Cloud provider itself. Recent proposals have addressed the problem of
exploring possible dependencies among different characteristics of the services offered by Cloud
providers [40]. These proposals represent only a first step in the definition of a comprehensive
framework that allows users to select the Cloud provider that best fits their needs and verifies that
providers offer services fully compliant with the signed contract.

Hardware-based techniques have also been adopted to guarantee the proper protection of sen-
sitive data in the Cloud. Some of the most notable solutions include the ARM TrustZone and the
Intel Software Guard Extensions (SGX) technology. ARM TrustZone introduces several hardware-
assisted security extensions to ARM processor cores and on-chip peripherals. The platform is then
split into a “secure world” and a “normal world,” each of which has different privileges and a
controlled communication interface. The Intel SGX technology supports the creation of trusted
execution environments, called enclaves, where sensitive data can be stored and processed.

Advanced cyberattacks in the Cloud domain represent a serious threat that may affect the confi-
dentiality, integrity, and availability of data and computations. In particular, Advanced Persistent
Threats (APTs) deserves a particular mention. This is an emerging class of cyberattacks that are
goal oriented, highly targeted, well organised, well funded, technically advanced, stealthy, and per-
sistent. The notorious Stuxnet, Flame, and Red October are some examples of APTs. APTs poses a
severe threat to the Cloud computing domain, as APTs have special characteristics that can disable
the existing defence mechanisms of Cloud computing such as antivirus, firewall, intrusion detec-
tion, and antivirus [158]. Indeed, APT-based cyber breach instances and cybercrime activities have
recently been on the rise, and it has been predicted that a 50% increase in security budgets will be
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observed to rapidly detect and respond to them [19]. In this context, enhancing the technical levels
of cyber defence only is far from being enough [57]. To mitigate the loss caused by APTs, a mixture
of technical-driven security solutions and policy-driven security solutions must be designed. For
example, data encryption can be viewed as the final layer of protection for ATP attacks. A policy
to force all sensitive data to be encrypted and to stay in a “trusted environment” can prevent data
leakage—even if the attack can successfully penetrate into the system, all they can see is encrypted
data. Another example is to utilise one-time password for strong authentication, providing better
protection to clouds.

2.9 Economics of Cloud Computing

Research themes in Cloud economics have centred on a number of key aspects over recent years:
(1) pricing of Cloud services—i.e., how a Cloud provider should determine and differentiate be-
tween different capabilities they offer, at different price bands and durations (e.g., micro, mini,
large VM instances); (2) brokerage mechanisms that enable a user to dynamically search for Cloud
services that match a given profile within a predefined budget; and (3) monitoring to determine if
user requirements are being met, and identifying penalty (often financial) that must be paid by a
Cloud provider if values associated with pre-agreed metrics have been violated. The last of these
has seen considerable work in the specification and implementation of SLAs, including implemen-
tation of specifications such as WS-Agreement [3].

SLA is traditionally a business concept, as it specifies contractual financial agreements between
parties who engage in business activities. Faniyi and Bahsoon [50] observed that up to three SLA
parameters (performance, memory, and CPU cycle) are often used. SLA management also relates to
the supply and demand of computational resources, instances and services [17, 22]. A related area
of policy-based approaches is also studied extensively [25]. Policy-based approaches are effective
when resource adaptation scenarios are limited in number. As the number of encoded policies
grow, these approaches can be difficult to scale. Various optimisation strategies have been used to
enable SLA and policy-based resource enforcement.

Another related aspect in Cloud economics has been an understanding of how an organisa-
tion migrates current in-house or externally hosted infrastructure to Cloud providers, involving
the migration of an in-house IT department to a Cloud provider. Migration of existing services
needs to take account of both social and economic aspects of how Cloud services are provisioned
and subsequently used, and risk associated with uptime and availability of often business crit-
ical capability. Migrating systems management capabilities outside an organisation also has an
influence on what skills need to be retained within an organisation. According to a survey by
RightScale [156], IT departments may now be acting as potential brokers for services that are
hosted, externally within a data centre. Systems management personnel may now be acting as
intermediaries between internal user requests and technical staff at the CDC, whilst some com-
panies may fully rely instead on technical staff at the data centre, completely removing the need
for local personnel. This would indicate that small companies, in particular, may not need to re-
tain IT skills for systems management and administration, instead relying on pre-agreed SLAs
with CDCs. This has already changed the landscape of the potential skills base in IT compa-
nies. Many Universities also make use of Microsoft Office 365 for managing email, an activ-
ity that was closely guarded and managed by their Information Services/IT departments in the
past.

The above context has also been motivated with interest in new implementation technologies
such as sub-second billing made possible through container-based deployments, often also re-
ferred to as “serverless computing,” such as in Google “functions,” AWS Lambda, amongst others.
Serverless computing is discussed further in online Appendix A.4.
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Licensing is another economics-related issue, which can include annual or perpetual licensing.
These can be restrictive for Cloud resources (e.g., not on-demand, limited number of cores, etc.)
when dealing with the demands of large business and engineering simulations for physics, man-
ufacturing, and so on. Independent Software Vendors (ISVs) such as ANSYS, Dassault, Siemens,
and COMSOL are currently investigating or already have more suitable licensing models for the
Cloud, such as BYOL (bring your own license), or credits/tokens/elastic units, or fully on-demand.

Another challenge in Cloud economics is related to choosing the right Cloud provider. Com-
paring offerings between different Cloud providers is time consuming and often challenging, as
providers do not use the same terminology when offering computational and storage resources,
making a like-for-like comparison difficult. A number of commercial and research grade platforms
have been proposed to investigate benefit/limits of Cloud selection, such as RightScale PlanFor-
Cloud , CloudMarketMaker [97], pricing tools from particular providers (e.g., Amazon Cost Calcu-
lator , and SMI (Service Measurement Index) for ranking Cloud services [59]. Such platforms focus
on what the user requires and hide the internal details of the Cloud provider’s resource specifica-
tions and pricing models. In addition, marketplace models are also studied where users purchase
services from SaaS providers that in turn procure computing resources from either PaaS or IaaS
providers [4].

2.10 Application Development and Delivery

Cloud computing empowers application developers with the ability to programmatically control
infrastructure resources and platforms. Several benefits have emerged from this feature, such as
the ability to couple the application with auto-scaling controllers and to embed in the code ad-
vanced self-* mechanisms for organising, healing, optimising, and securing the Cloud application
at runtime.

A key benefit of resource programmability is a looser boundary between development and op-
erations, which results in the ability to accelerate the delivery of changes to the production envi-
ronment. To support this feature, a variety of agile delivery tools and model-based orchestration
languages (e.g., Terraform and OASIS TOSCA) are increasingly adopted in Cloud application deliv-
ery pipelines and DevOps methodologies [12]. These tools help automating lifecycle management,
including continuous delivery and continuous integration, application and platform configuration,
and testing.

In terms of platform programmability, separation of concerns has helped in tackling the com-
plexity of software development for the Cloud and runtime management. For example, MapRe-
duce enables application developers to specify functional components of their application, namely
map and reduce functions on their data; while enabling the middleware layers to deal with non-
functional concerns, such as parallelisation, data locality optimisation, and fault tolerance. Several
other programming models have emerged and are currently being investigated, to cope with the
increasing heterogeneity of Cloud platforms. For example, in Edge computing, the effort to split
applications relies on the developers [31]. Recent efforts in this area are also not yet fully auto-
mated [101]. Problems of this kind can be seen in many situations. Even though it is expected that
there will be a wide variety and large number of edge devices and applications, there is a shortage
of application delivery frameworks and programming models to deliver software spanning both
the Edge and the CDC, to enable the use of heterogeneous hardware within Cloud applications,
and to facilitate InterClouds operation.

Besides supporting and amplifying the above trends, an important research challenge is appli-
cation evolution. Accelerated and continuous delivery may foster a short-term view of the applica-
tion evolution, with a shift towards reacting to quality problems arising in production rather than
avoiding them through careful design. This is in contrast with traditional approaches, where the
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application is carefully designed and tested to be as bug-free as possible prior to release. However,
the traditional model requires more time between releases and thus it is less agile than continuous
delivery methods. There is still a shortage of research in Cloud software engineering methods to
combine the strengths of these two delivery approaches. For example, continuous acquisition of
performance and reliability data across Cloud application releases may be used to better inform
application evolution, to automate the process of identifying design anti-patterns, and to explore
what-if scenario during testing of new features. Holistic methods to implement this vision need
to be systematically investigated over the coming years.

2.11 Data Management

One of the key selling points of Cloud computing is the availability of affordable, reliable, and
elastic storage that is collocated with the computational infrastructure. This offers a diverse suite
of storage services to meet most common enterprise needs while leaving the management and
hardware costs to the IaaS service provider. They also offer reliability and availability through
multiple copies that are maintained transparently, along with disaster recovery with storage that
can be replicated in different regions. A number of storage abstractions are also offered to suit a
particular application’s needs, with the ability to acquire just the necessary quantity and pay for it.
Object-based storage (Amazon Simple Storage Service (S3), Azure File), block storage services (Azure
Blob, Amazon Elastic Block Store) of a disk volume, and logical Hard Disk Drive and Solid-state
Drive disks that can be attached to VMs are common ones. Besides these, higher-level data plat-
forms such as NoSQL columnar databases, relational SQL databases and publish-subscribe message
queues are available as well.

At the same time, there has been a proliferation of Big Data platforms [107] running on dis-
tributed VM’s collocated with the data storage in the data centre. The initial focus has been on
batch processing and NoSQL query platforms that can handle large data volumes from web and
enterprise workloads, such as Apache Hadoop, Spark and HBase. However, fast data platforms for
distributed stream processing such as Apache Storm, Heron, and Apex have grown to support data
from sensors and Internet-connected devices. PaaS offerings such as Amazon ElasticMR, Kinesis,
Azure HDInsight and Google Dataflow are available as well.

While there has been an explosion in the data availability over the past decade, and along with
the ability to store and process them on Clouds, many challenges still remain. Services for data
storage have not been adequately supported by services for managing their metadata that allows
data to be located and used effectively [120]. Data security and privacy remain a concern (dis-
cussed further in Section 2.8), with regulatory compliance being increasingly imposed by various
governments (such as the recent EU General Data Protection Regulation (GDPR) and US CLOUD
Act), as well as leakages due to poor data protection by users. Data are increasingly being sourced
from the edge of the network as IoT device deployment grows, and the latency of wide area net-
works inhibits their low-latency processing. Edge and Fog computing may hold promise in this
respect [150].

Even within the data centre, network latencies and bandwidth between VMs, and from VM
to storage can be variable, causing bottlenecks for latency-sensitive stream processing and
bandwidth-sensitive batch processing platforms. Solutions such as Software Defined Networking
(SDN) and Network Functions Virtualization (NFV), which can provide mechanisms required for
allocating network capacity for certain data flows both within and across data centres with certain
computing operations been performed in-network, are needed [110]. Better collocation guarantees
of VMs and data storage may be required as well.

There is also increasing realisation that a lambda architecture that can process both data at
rest and data at motion together is essential [105]. Big Data platforms such as Apache Flink and
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Spark Streaming are starting to offer early solutions but further investigation is required [162]. Big
Data platforms also have limited support for automated scaling out and in on elastic Clouds, and
this feature is important for long-running streaming applications with dynamic workloads [106].
While the resource management approaches discussed above can help, these are yet to be actively
integrated within Big Data platforms. Fine-grained per-minute and per-second billing along with
faster VM acquisition time, possibly using containers, can help shape the resource acquisition
better. In addition, composing applications using serverless computing such as AWS Lambda and
Azure Functions has been growing rapidly [8]. These stateless functions can off-load the resource
allocation and scaling to the Cloud platform provider while relying on external state by distributed
object management services like Memcached or storage services like S3.

2.12 Networking

Cloud data centres are the backbone of Cloud services where application components reside and
where service logic takes place for both internal and external users. Successful delivery of Cloud
services requires many levels of communication happening within and across data centres. Ensur-
ing that this communication occurs securely, seamlessly, efficiently and in a scalable manner is a
vital role of the network that ties all the service components together.

During the past decade, there has been many network-based innovations and research that have
explicitly explored Cloud networking. For example, technologies such as SDN and NFV intended to
build agile, flexible, and programmable computer networks to reduce both capital and operational
expenditure for Cloud providers. In online Appendix A.5 SDN and NFV are further discussed.
Likewise, scaling limitations as well as the need for a flat address space and over subscription of
servers also have prompted many recent advances in the network architecture such as VL2 [74],
PortLand [123], and BCube [77] for the CDCs. Despite all these advances, there are still many
networking challenges that need to be addressed.

One of the main concerns of today’s CDCs is their high energy consumption. Nevertheless,
the general practice in many data centres is to leave all networking devices always on [84]. In
addition, unlike computing servers, the majority of network elements such as switches, hubs, and
routers are not designed to be energy proportional and things such as, sleeping during no traffic
and adaptation of link rate during low traffic periods, are not a native part of the hardware [113].
Therefore, the design and implementation of methodologies and technologies to reduce network
energy consumption and make it proportional to the load remain as open challenges.

Another challenge with CDC networks is related to providing guaranteed QoS. The SLAs of
today’s Clouds are mostly centred on computation and storage [78]. No abstraction or mecha-
nism enforcing the performance isolation and hence no SLAs beyond best effort is available to
capture the network performance requirements such as delay and bandwidth guarantees. Within
the data centre infrastructure, Guo et al. [78] propose a network abstraction layer called VDC
that works based on a source routing technique to provide bandwidth guarantees for VMs. Yet,
their method does not provide any network delays guarantee. This challenge becomes even more
pressing, when network connectivity must be provided over geographically distributed resources,
for example, deployment of a “virtual cluster” spanning resources on a hybrid Cloud environ-
ment. Even though the network connectivity problem involving resources in multiple sites can
be addressed using network virtualization technologies, providing performance guarantees for
such networks as it traverses over the public Internet raises many significant challenges that re-
quire special consideration [144]. The primary challenge in this regard is that cloud providers
do not have privileged access to the core Internet equipment as they do in their own data cen-
tres. Therefore, cloud providers’ flexibility regarding routing and traffic engineering is limited to
a large extent. Moreover, the performance of public network such as the Internet is much more
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unpredictable and changeable compared to the dedicate network of data centres that makes it more
difficult to provide guaranteed performance requirements. Traditional WAN approaches such as
Multi-Protocol Label Switching (MPLS) for traffic engineering in such networks are also inefficient
in terms of bandwidth usage and handling latency-sensitive traffic due to lack of global view of
the network [85]. This is one of the main reasons that companies such as Google invested on its
own dedicated network infrastructures to connect its data centres across the globe [95].

In addition, Cloud networking is not a trivial task and modern CDCs face similar challenges to
building the Internet due to their size [9]. The highly virtualized environment of a CDC is also
posing issues that have always existed within network apart from new challenges of these multi-
tenant platforms. For example in terms of scalability, VLANs (Virtual Local Area Network) are a
simple example. At present, VLANs are theoretically limited to 4,096 segments. Thus, the scale
is limited to approximately 4,000 tenants in a multitenant environment. VXLAN offers encapsu-
lation methods to address the limited number of VLANs. However, it is limited in multicasting,
and supports Layer 2 only within the logical network. IPv4 is another example, where some Cloud
providers such as Microsoft Azure admitted that they ran out of addresses. To overcome this issue
the transition to the impending IPv6 adoption must be accelerated. This requirement means that
the need for network technologies offering high performance, robustness, reliability, flexibility,
scalability, and security never ends [9].

2.13 Usability

The Human Computer Interface and Distributed Systems communities are still far from one an-
other. Cloud computing, in particular, would benefit from a closer alignment of these two com-
munities. Although much effort has happened on resource management and back-end-related
issues, usability is a key aspect to reduce costs of organisations exploring Cloud services and
infrastructure. This reduction is possible, mainly due to labour-related expenses as users can
have better quality of service and enhance their productivity. The usability of Cloud [49] has
already been identified as a key concern by NIST as described in their Cloud Usability Frame-
work [142], which highlights five aspects: capable, personal, reliable, secure, and valuable. Ca-
pable is related to meeting Cloud consumers expectations with regard to Cloud service capabili-
ties. Personal aims at allowing users and organizations to change the look and feel of user inter-
faces and to customise service functionalities. Reliable, secure, and valuable are aspects related to
having a system that performs its functions under state conditions, safely/protected, and that re-
turns value to users respectively. Coupa’s white paper [34] on usability of Cloud applications also
explores similar aspects, highlighting the importance of usability when offering services in the
Internet.

For usability, current efforts in Cloud have mostly focused on encapsulating complex services
into APIs to be easily consumed by users. One area where this is clearly visible is High Perfor-
mance Computing (HPC) Cloud [122]. Researchers have been creating services to expose HPC
applications to simplify their consumptions [32, 86]. These applications are not only encapsulated
as services, but also receive Web portals to specify application parameters and manage input and
output files.

Another direction related to usability of Cloud that got traction in the last years is DevOps [11,
130]. Its goal is to integrate development (Dev) and operations (Ops) thus aiding faster software
delivery (as also discussed in Sections 2.10 and 4.10). DevOps has improved the productivity of
developers and operators when creating and deploying solutions in Cloud environments. It is rel-
evant not only to build new solutions in the Cloud but also to simplify the migration of legacy
software from on-premise environments to multi-tenancy elastic Cloud services.
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3 EMERGING TRENDS AND IMPACT AREAS

As Cloud computing and relevant research matured over the years, it led to several advancements
in the underlying technologies such as containers and software defined networks. These devel-
opments in turn have led to several emerging trends in Cloud computing such as Fog computing,
serverless computing, and software defined computing. In addition to them, other emerging trends
in ICT such as Big Data, machine/deep learning, and blockchain technology also have started in-
fluencing the Cloud computing research and have offered wide opportunities to deal with the open
issues in Cloud-related challenges. The emerging trends and impact areas relevant in the Cloud
horizon are discussed in detail by the manifesto. However, due to the limitation in number of
pages, the discussion is being produced as online Appendix to the article. The Appendix ponders
the following topics:

A.1 - Containers: New type of virtualization technology with tiny memory footprint, lesser re-
source requirement and faster startup. A.2 - Fog Computing: Computing at the edge of the network
and it envisions to make decisions as close as possible to the data source. A.3 - Big Data: Discusses
rapid escalation in the generation of streaming data from IoT and social networking applications.
A.4 - Serverless Computing: An emerging architectural pattern where the server is abstracted away
and the resources are automatically managed for the user. A.5 - Software-defined Cloud Computing:
Optimising and automating the Cloud configuration and adaptation by extending the virtualiza-
tion to compute, storage, and networks. A.6 - Blockchain: Distributed immutable ledger deployed
in a decentralised network that relies on cryptography to meet security constraints. A.7 - Machine
and Deep Learning: Algorithms and models for optimised resource management and ML services
offered from Clouds.

4 FUTURE RESEARCH DIRECTIONS

The Cloud computing paradigm, like the Web, the Internet, and the computer itself, has trans-
formed the information technology landscape in its first decade of existence. However, the next
decade will bring about significant new requirements, from large-scale heterogeneous IoT and
sensor networks producing very large datastreams to store, manage, and analyse to energy- and
cost-aware personalised computing services that must adapt to a plethora of hardware devices
while optimising for multiple criteria including application-level QoS constraints and economic
restrictions.

Significant research was already performed to address the Cloud computing technological and
adoption challenges, and the state of the art along with their limitations is discussed thoroughly
in Section 2. The future research in Cloud computing should focus at addressing these limitations
along with the problems hurled and opportunities presented by the latest developments in the
Cloud horizon. Thus the future R&D will greatly be influenced/driven by the emerging trends dis-
cussed in Section 3. Here the manifesto provides the key future directions for the Cloud computing
research, for the coming decade.

4.1 Scalability and Elasticity

Scalability and elasticity research challenges for the next decade can be decomposed into hardware,
middleware, and application-level.

At the Cloud computing hardware level, an interesting research direction is special-purpose
Clouds for specific functions, such as deep learning—e.g., Convolutional Neural Networks, Multi-
Layer Perceptrons, and Long Short-Term Memory—datastream analytics and image and video
pattern recognition. While these functionalities may appear to be very narrow, they can be de-
ployed for a spectrum of applications and their usage is increasingly growing. There are numerous
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examples at control points at airports, social network mining, IoT sensor data analytics, smart
transportation, and many other applications. Key Cloud providers are already offering accelera-
tors and special-purpose hardware with increasing usage growth, e.g., Amazon is offering GPUs,
Google has been deploying Tensor Processing Units (TPUs) [99] and Microsoft is deploying FP-
GAs in the Azure Cloud [129]. As new hardware addresses scalability, Clouds need to embrace
non-traditional architectures, such as neuromorphic, quantum computing, adiabatic, nanocom-
puting, and many others (see Reference [90]). Research needed includes developing appropriate
virtualization abstractions, as well as programming abstractions enabling just-in-time compila-
tion and optimisation for special-purpose hardware. Appropriate economic models also need to
be investigated for FaaS Cloud providers (e.g., offering image and video processing as composable
micro-services).

At the Cloud computing middleware level, research is required to further increase reuse of ex-
isting infrastructure, to improve speed of deployment and provisioning of hardware and networks
for very large-scale deployments. This includes algorithms and software stacks for reliable execu-
tion of applications with failovers to geographically remote private or hybrid Cloud sites. Research
is also needed on InterClouds that will seamlessly enable computations to run on multiple pub-
lic Cloud providers simultaneously. To support HPC applications, it will be critical to guarantee
consistent performance across multiple runs even in the presence of additional Cloud users. New
deployment and scheduling algorithms need to be developed to carefully match HPC applications
with those that would not introduce noise in parallel execution or, if not possible, to use dedicated
clusters for HPC [79, 122].

To be able to address large-scale communication-intensive applications, further Cloud provider
investments are required to support high-throughput and low-latency networks [122]. The envi-
ronment of these applications necessitates sophisticated mechanisms for handling multiple clients
and for providing sustainable and profitable business provision. Moreover, Big Data applications
are leveraging HPC capabilities and IoT, providing support for many modern applications such
as smart cities [132] or industrial IoT [16]. These applications have demanding requirements in
terms of (near-)real time processing of large scale of data, its intelligent analysis and then closing
the loops of control.

4.2 Resource Management and Scheduling

The evolution of the Cloud in the upcoming years will lead to a new generation of research solu-
tions for resource management and scheduling. Technology trends such as Fog will increase the
level of decentralisation of the computation, leading to increased heterogeneity in the resources
and platforms and also to more variability in the processed workloads. Technology trends, such
as serverless computing and Edge computing, will also offer novel opportunities to reason on the
tradeoffs of offloading part of the application logic far from the system core, posing new questions
on optimal management and scheduling. Conversely, trends such as software-defined computing
and Big Data will come to maturity, expanding the enactment mechanisms and reasoning tech-
niques available for resource management and scheduling, thus offering many outlets for novel
research.

Challenges arising from decentralisation are inherently illustrated in the Fog computing domain,
edge analytics (discussed further in Section 4.7) being one interesting research direction. In edge
analytics, the stream-based or event-driven sensor data will be processed across the complete hi-
erarchy of Fog topology. This will require cooperative resource management between centralised
CDCs and distributed Edge computing resources for real-time processing. Such management meth-
ods should be aware of the locations and resources available to edge devices for optimal resource
allocation, and should take into account device mobility, highly dynamic network topology, and
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privacy and security protection constraints at scale. The design of multiple co-existing control
loops spanning from CDCs to the Edge is, by itself, a broad research challenge from the point of
design, analysis and verification, implementation and testing. The adoption of container technol-
ogy in these applications will be useful due to its small footprint and fast deployment [124].

Novel research challenges in the area of scheduling will also arise in these decentralised and
heterogeneous environments. Recently proposed concepts such as multi-resource fairness [72] as
well as non-conventional game theoretic methods [133], which today are primarily applied to small
to medium-scale computing clusters or to define optimal economic models for the Cloud, need to
be generalised and applied to large-scale heterogeneous settings comprising both CDCs and Edge.
For example, mean-field games may help in addressing inherent scalability problems by helping
to reason about the interaction of a large number of resources, devices and user types [133].

Serverless computing is an example of emerging research challenges in management and sched-
uling, such as offloading the computation far from the application core components that imple-
ment the business logic. From the end user standpoint, FaaS raises the expectation that functions
will be executed within a specific time, which is challenging given that current performance
is quite erratic [54] and network latency can visibly affect function response time. Moreover,
given that function cost is per access, this will require novel resource management policies to
decide when and to which extent rely on FaaS instead of microservices that run locally to the
application.

From the FaaS provider perspective, allocation of resources needs to be optimal (neither exces-
sive nor insufficient), and, from a user perspective, a desirable level of QoS needs to be achieved
when functions are executed, determining suitable tradeoffs with execution requirements, net-
work latency, privacy and security requirements. Given that a single application backed by FaaS
can lead to hundreds of hits to the Cloud in a second, an important challenge for serverless plat-
form providers will be to optimise allocation of resources for each class of service so that revenue is
optimised, while all the user FaaS QoS expectations are met. This research will require to take into
consideration soft constraints on execution time of functions and proactive FaaS provisioning to
avoid high latency of resource start-up to affect the performance of backed applications. Moreover,
providers and consumers, both for FaaS and regular Cloud services, often have different goals and
constraints, calling for novel game-theoretic approaches and market-oriented models for resource
allocation and regulation of the supply and demand within the Cloud platform.

The emerging SDN paradigm exemplifies a novel trend that will extend the range of control
mechanisms available for holistic management of resources. By logically centralising the network
control plane, SDNs provide opportunities for more efficient management of resources located in
a single administrative domain such as a CDC. SDN also facilitates joint VM and traffic consolida-
tion, a difficult task to do in traditional data centre networks, to optimise energy consumption and
SLA satisfaction, thus opening new research outlets [36]. Service Function Chaining (SFC) is an
automated process to set up the chain of virtual network functions (VNFs), e.g., network address
translation (NAT), firewalls, intrusion detection systems (IDS) in an NFV environment using in-
stantiation of software-only services. Leveraging SDN together with NFV technologies allows for
efficient and on-demand placement of service chains [30]. However, optimal service chain place-
ment requires novel heuristics and resource management policies. The virtualized nature of VNFs
also makes their orchestration and consolidation easier and dynamic deployment of network ser-
vices possible [108, 127], calling for novel algorithms that can exploit these capabilities.

In addition, it is foreseeable that the ongoing interest for ML, deep learning, and AI applica-
tions will help in dealing with the complexity, heterogeneity, and scale, in addition to spawn novel
research in established data centre resource management problems such as VM provisioning, con-
solidation, and load balancing. It is, however, important to recognise that potential loss of control
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and determinism may arise by adopting these techniques. Research in explainable AI may provide
a suitable direction for novel research to facilitate the adoption of AI methods in Cloud manage-
ment solutions within the industry [46].

For example, in scientific workflows the focus so far has been on efficiently managing the ex-
ecution of platform-agnostic scientific applications. As the amount of data processed increases
and extreme-scale workflows begin to emerge, it is important to consider key concerns such as
fault tolerance, performance modelling, efficient data management, and efficient resource usage.
For this purpose, Big Data analytics will become a crucial tool [42]. For instance, monitoring and
analysing resource consumption data may enable workflow management systems to detect per-
formance anomalies and potentially predict failures, leveraging technologies such as serverless
computing to manage the execution of complex workflows that are reusable and can be shared
across multiple stakeholders. Although today there exist the technical possibility to define so-
lutions of this kind, there is still a shortage of applications of serverless functions to HPC and
scientific computing use cases, calling for further research in this space.

4.3 Reliability

One of the most challenging areas in Cloud computing systems is reliability as it has a great impact
on the QoS as well as on the long term reputation of the service providers. Currently, all the Cloud
services are provided based on the cost and performance of the services. The key challenge faced
by Cloud service providers is how to deliver a competitive service that meets end users’ expecta-
tions for performance, reliability, and QoS in the face of various types of independent as well as
temporal and spatial correlated failures. So the future of research in this area will be focused on
innovative Cloud services that provide reliability and resilience with assured service performance;
which is called Reliability as a Service (RaaS). The main challenge is to develop a hierarchical and
service-oriented cloud service reliability model based on advanced mathematical and statistical
models [126]. This requires new modules to be included in the existing Cloud systems such as
failure model and workload model to be adapted for resource provisioning policies and provide
flexible reliability services to a wide range of applications.

One of the future directions in RaaS will be using deep and machine learning for failure pre-
diction. This will be based on failure characterisation and development of a model from massive
amount of failure datasets. Having a comprehensive failure prediction model will lead to a failure-
aware resource provisioning that can guarantee the level of reliability and performance for the
user’s applications. This concept can be extended as another research direction for the Fog com-
puting where there are several components on the edge. While fault-tolerant techniques such as
replication could be a solution in this case, more efficient and intelligent approaches will be re-
quired to improve the reliability of new type of applications such as IoT applications. This needs
to be incorporated with the power efficiency of such systems and solving this tradeoff will be a
complex research challenge to tackle [118].

Another research direction in reliability will be about Cloud storage systems that are now ma-
ture enough to handle Big Data applications. However, failures are inevitable in Cloud storage sys-
tems as they are composed of large-scale hardware components. Improving fault tolerance in Cloud
storage systems for Big Data applications is a significant challenge. Replication and Erasure coding
are the most important data reliability techniques employed in Cloud storage systems [121]. Both
techniques have their own tradeoffs in various parameters such as durability, availability, storage
overhead, network bandwidth and traffic, energy consumption and recovery performance. Future
research should include the challenges involved in employing both techniques in Cloud storage
systems for Big Data applications with respect to the aforementioned parameters [121]. This hy-
brid technique applies proactive dynamic data replication of erasure coded data based on node
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failure prediction, which significantly reduces network traffic and improves the performance of
Big Data applications with less storage overhead. So, the main research challenge would be solv-
ing a multivariable optimisation problem to take into account several metrics to meet users and
providers requirements.

4.4 Sustainability

Sustainability of ICT systems is emerging as a major consideration [61] due to the energy con-
sumption of ICT systems. Of course, sustainability also covers issues regarding the pollution and
decontamination of the manufacturing and decommissioning of computer and network equip-
ment, but this aspect is not covered in the present article.

In response to the concern for sustainability, viewed primarily through the lens of energy con-
sumption and energy awareness, increasingly large CDCs are being established, with up to 1000
MW of potential power consumption, in or close to areas where there are plentiful sources of re-
newable energy [15], such as hydro-electricity in northern Norway, and where natural cooling
can be available as in areas close to the Arctic Circle. This actually requires new and innovative
system architectures that can distribute data centres and Cloud computing, geographically. To ad-
dress this, algorithms have been proposed, which rely on geographically distributed data coordi-
nation, resource provisioning and energy-aware and carbon footprint-aware provisioning in data
centres [47, 81, 104]. In addition, geographical load balancing can provide an effective approach
for optimising both performance and energy usage. With careful pricing, electricity providers can
motivate Cloud service providers to “follow the renewables” and serve requests through CDCs
located in areas where green energy is available [111]. However, the smart grid focuses on con-
trolling the flow of energy in the electric grid with the help of computer systems and networks,
and there seems to be little if any work on the energy consumption by the ICT components in the
smart grid, perhaps because the amount would be small as compared to the overall energy con-
sumption of a country or region. Interestingly enough, there has been recent work on dynamically
coupling the flow of energy to computing and communication resources, and the flow of energy to
the components of such computer/communication systems [62] to satisfy QoS and SLAs for jobs
while minimising the energy consumption, but much more work will be needed.

However, placing data centres far away from most of the end users places a further burden on
the energy consumption and QoS of the networks that connect the end users to the CDCs. Indeed,
it is important to note that moving CDCs away from users will increase the energy consumed in
networks, so that some remote solutions that are based on renewable energy may substantially
increase the energy consumption of networks that are powered through conventional electrical
supplies. Another challenge relates to the very short end-to-end delay that certain operations, such
as financial transactions, require; thus data centres for financial services often need to be located in
proximity to the actual human users and financial organisations (such as banks) that are designing,
maintaining and modifying the financial decision making algorithms, as well as to the commodity
trading data bases whose state must accurately reflect current prices, since users need to buy and
sell stock or other commodities at up-to-date prices that may automatically change within less
than a second. Another factor is the proprietary nature of the data that is being used, and the legal
and security requirements that can often only be verified and complied within national boundaries
or within the EU. Thus if the data remains local, the CDCs that process it also have to be local. Thus
in many cases, the Cloud cannot rely on renewable energy to operate effectively simply because
renewal energy is not available locally and because some renewable energy sources (e.g., wind and
photovoltaic) tend to be intermittent. At the other end, the power needs of CDCs and the Cloud
are also growing due to the ever-increasing amount of data that need to be stored and processed.
Thus running the Cloud and CDCs in an energy efficient manner remains a major priority.
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Unfortunately, high performance and more data processing has always gone hand-in-hand with
greater energy consumption. Thus QoS, SLAs, and energy consumption have to be considered
simultaneously and need to be managed online [63]. Since all the fast-changing online behaviours
cannot be predicted in advance or modelled in a complete manner, adaptive self-aware techniques
are needed to face this challenge [154]. Some progress has been recently made in this direction
[155] but further work will be needed. The actual algorithms that may be used will include machine
learning techniques such as those described in Yin et al. [159], which exploits constant online
measurement of system parameters that can lead to online decision making that will optimise
sustainability while respecting QoS considerations and SLAs.

The Fog can also substantially increase energy consumption because of the greater difficulty of
efficient energy management for smaller and highly diverse systems [62, 64]. At the same time, the
reduced access distance and network size from the end users to the Fog servers can create energy
savings in networks. Therefore, the interesting tradeoff between the increased energy consump-
tion from many disparate and distribute Fog servers, and the reduced network energy consumption
when the Fog servers are installed in close proximity to the end user, requires much further work
[65]. Such research should include the improvements in network QoS that may be experienced
by end users, when they access locally distributed Fog servers and their traffic traverses a smaller
number of network nodes. There have been attempts to conduct experimental research in this
direction with the help of machine learning based techniques [154].

Some approaches for improving sustainability and reducing energy consumption in the Cloud,
primarily focus on the VM consolidation for minimising the energy consumption of the servers,
which has been shown to be quite effective [13], while the Cloud cannot be accessed without
the help of networks. However, reducing energy consumption in networks is also a complex prob-
lem [56, 67]. Saving energy for networking elements often disturbs other aspects such as reliability,
scalability, and performance of the network [69]. Proposals have been made and tested regarding
the design of smart energy-aware routing algorithms [66], but this area in general has received
less attention compared to energy consumption and power efficiency of computing elements. With
the advent of SDN, the global network awareness and centralised decision-making offered by SDN
may provide a better opportunity for creating sustainable networks for Clouds [55]. This is per-
haps one of the areas that will draw substantially more research efforts and innovation in the next
decade.

4.5 Heterogeneity

Heterogeneity on the Cloud was introduced in the last decade, but awaits widespread adoption.
As highlighted in Section 2.5, there are currently at least two significant gaps that hinder hetero-
geneity from being fully exploited on the Cloud. The first gap is between unified management
platforms and heterogeneity. Existing research that targets resource and workload management
in heterogeneous Cloud environments is fragmented. This translates into the lack of availability of
a unified environment for efficiently exploiting VM level, vendor level and hardware architecture
level heterogeneity while executing Cloud applications. The manifesto therefore proposes for the
next decade an umbrella platform that accounts for heterogeneity at all three levels. This can be
achieved by integrating a portfolio of workload and resource management techniques from which
optimal strategies are selected based on the requirement of an application. For this, heterogeneous
memory management will be required. Current solutions for memory management rely mainly on
hypervisors, which limits the benefits from heterogeneity. Alternate solutions recently proposed
rely on making guest operating systems heterogeneity-aware [102].

The second gap is between abstraction and heterogeneity. Current programming models for
using hardware accelerators require accelerator specific languages and low-level programming
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efforts. Moreover, these models are conducive for developing scientific applications. This restricts
the wider adoption of heterogeneity for service oriented and user-driven applications on the Cloud.
One meaningful direction to pursue will be to initiate a community-wide effort for developing
an open-source high-level programming language that can satisfy core Cloud principles, such as
abstraction and elasticity, which are suited for modern and innovative Cloud applications in a
heterogeneous environment. This will also be a useful tool as the Fog ecosystem emerges and
applications migrate to incorporate both Cloud and Fog resources.

Recent research in this area has highlighted the limitation of current programming languages,
such as OpenCL [28]. The interaction between CPUs and the hardware accelerator need to be ex-
plicitly programmed, which limits the automatic transformation of source code in efficient ways.
To this end, fine-grained task partitioning needs to be automated for general purpose applica-
tions. Additionally, the automated conversion from coarse-grained to fine-grained task partition-
ing is required. In the context of OpenCL programming, there is limited performance portability,
which is to be addressed. However, currently available high-level programming languages, such as
TANGRAM [29] provide performance portability across different accelerators, but need to incor-
porate performance models and adaptive runtimes for finding optimal strategies for interaction
between the CPU and the hardware accelerator.

Although the Cloud as a utility is a more recent offering, a number of the underlying tech-
nologies for supporting different levels of heterogeneity (memory, processors etc.) in the Cloud
came into inception a few decades ago. For example, the Multiplexed Information and Comput-
ing Service (Multics) offered single-level memory, which was the foundation of virtual memory
for heterogeneous systems. Similarly, IBM developed CP-67, which was one of the first attempts
in virtualizing mainframe operating systems to implement time-sharing. Later on VMWare used
this technology for virtualizing x86 servers. The earlier technology was able to even provide I/O
virtualization, and meaningful ways of addressing some of the challenges raised by modern het-
erogeneity may find inspiration in earlier technologies when the Cloud was not known.

Recently there is also a significant discussion about disaggregated data centres. Traditionally
data centres are built using servers and racks with each server contributing the resources such
as CPU, memory and storage, required for the computational tasks. With the disaggregated data
centre each of these resources is built as a stand-alone resource “blade,” where these blades are
interconnected through a high-speed network fabric. The trend has come into existence as there
is significant gap in the pace at which each of these resource technologies individually advanced.
Even though most prototypes are proprietary and in their early stages of development, a successful
deployment at the data centre level would have significant impact on the way the traditional IaaS
are provided. However, this needs significant development in the network fabric as well [58].

4.6 Interconnected Clouds

As the grid computing and web service histories have shown, interoperability and portability
across Cloud systems is a highly complicated area and it is clear at this time that pure standardis-
ation is not sufficient to address this problem. The use of application containers and configuration
management tools for portability, and the use of software adapters and libraries for interoperabil-
ity are widely used as practical methods for achieving interoperation across Cloud services and
products. However, there are a number of challenges [23], and thus potential research directions,
that have been around since the early days of Cloud computing and, due to their complexity, have
not been satisfactorily addressed so far.

One of such challenges is how to promote Cloud interconnection without forcing the adoption
of the minimum common set of functionalities among services: if users want, they should be able
to integrate complex functionalities even if they are offered only by one provider. Other research
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directions include how to enable Cloud interoperation middleware that can mimic complex ser-
vices offered by one provider by composing simple services offered by one or more providers -
so that the choice about the complex service or the composition of simpler services were solely
dependent on the user constraints—cost, response time, data sovereignty, and so on.

The above raises another important future research direction: how to enable middleware oper-
ating at the user-level (InterCloud and hybrid Clouds) to identify candidate services for a compo-
sition without support from Cloud providers? Given that providers have economic motivation to
try to retain all the functionalities offered to their customers (i.e., they do not have motivation to
facilitate that only some of the services in a composition are their own), one cannot expect that
an approach that requires Cloud providers cooperation might succeed.

Therefore, the middleware enabling composition of services has to solve challenges in its two
interfaces: in the interface with Cloud users, it needs to seamlessly deliver the service, in a level
where how the functionality is delivered is not relevant for users: it could be obtained in all from
a single provider (perhaps invoking a SaaS able to provide the functionality) or it could be ob-
tained by composing different services from different providers. In the provider interface, it enables
such more complex functions to be obtained, regardless of particular collaboration from providers:
provided that an API exists, the middleware would be in charge of understanding what informa-
tion/service the API can provide (and how to access such service) and thus decide by itself if it has
all the required input necessary to access the API, and even the output is sufficient to enable the
composition. This discussion makes clear the complexity of such middleware and the difficulty of
the questions that need to be addressed to enable such vision.

Nevertheless, ubiquitously interconnected Clouds (achieved via Cloud Federation) can truly be
achieved only when Cloud vendors are convinced that the Cloud interoperability adoption brings
them financial and economic benefits. This requires novel approaches for billing and accounting,
novel interconnected Cloud suitable pricing methods, along with formation of InterCloud market-
places [144].

Finally, the emergence of SDNs and the capability to shape and optimise network traffic has the
potential to influence research in Cloud interoperation. Google reports that one of the first uses
of SDNs in the company was for optimisation of wide-area network traffic connecting their data
centres [145]. In the same direction, investigation is needed on the feasibility and benefits of SDN
and NFV to address some of the challenges above. For example, SDN and NFV can enable better
security and QoS for services built as compositions of services from multiple providers (or from
geographically distributed services from the same provider) by enforcing prioritization of service
traffic across providers/data centres and specific security requirements [87].

4.7 Empowering Resource-Constrained Devices

Regarding future directions for empowering resource-constrained devices, in the mobile Cloud
domain, we already have identified that, while task delegation is a reality, code offloading still has
adaptability issues. It is also observed that, “as the device capabilities are increasing, the applications
that can benefit from the code offloading are becoming limited” [140]. This is evident, as the capabil-
ities of smartphones are increasing, to match or benefit from offloading, the applications are to be
offloaded to Cloud instances with much higher capacity. This incurs higher cost per offloading. To
address this, the future research in this domain should focus at better models for multi-tenancy in
Mobile Cloud applications, to share the costs among multiple mobile users. The problem further
gets complex due to the heterogeneity of both the mobile devices and Cloud resources.

We also foresee the need for incentive mechanisms for heterogeneous mobile Cloud offload-
ing to encourage mobile users to participate and get appropriate rewards in return. This should
encourage in adapting the mobile Cloud pattern to the social networking domain as well, in
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designing ideal scenarios. In addition, the scope and benefits offered by the emerging technologies
such as serverless computing, CaaS and Fog computing, to the mobile Cloud domain, are not yet
fully explored.

The incentive mechanisms are also relevant for the IoT and Fog domains. Recently there is sig-
nificant discussion about the establishment of Fog closer to the things, by infrastructure offered
by independent Fog providers [27]. These architectures follow the consumer-as-provider (CaP)
model. A relevant CaP example in the Cloud computing domain is the MQL5 Cloud Network [1],
which utilises consumer’s devices and desktops for performing various distributed computing
tasks. Adaptation of such Peer-to-Peer (P2P) and CaP models would require ideal incentive mech-
anisms. Further discussion about the economic models for such Micro Data centres is provided in
Section 4.9.

The container technology also brings several opportunities to this challenge. With the rise of
Fog and Edge computing, it can be predicted that the container technology, as a kind of lightweight
running environment and convenient packing tools for applications, will be widely deployed in
edge servers. For example, the customised containers, such as Cloud Android Container [157],
aimed at Edge computing and offloading features will be more and more popular. They provide
efficient server runtime and inspire innovative applications in IoT, AI, and other promising fields.

Edge analytics in domains such as real-time streaming data analytics would be another interest-
ing research direction for the resource constrained devices. The things in IoT primarily deal with
sensor data and the Cloud-centric IoT (CIoT) model extracts this data and pushes it to the Cloud
for processing. Primarily, Fog/Edge computing came to existence to reduce the network latencies
in this model. In edge analytics, the sensor data will be processed across the complete hierarchy
of Fog topology, i.e., at the edge devices, intermediate Fog nodes and Cloud. The intermediary
processing tasks include filtering, consolidation, error detection and so on. Frameworks that sup-
port edge analytics (e.g., Apache Edgent [5]) should be studied considering both the QoS and QoE
(Quality of Experience) aspects. Preliminary solutions related to scheduling and placement of the
edge analytics tasks and applications across the Fog topology are already appearing in the litera-
ture [114, 138]. Further research is required to deal with cost-effective multi-layer Fog deployment
for multi-stage data analytics and dataflow applications.

4.8 Security and Privacy

Due to the limitation in number of pages, the discussion is being produced as online Appendix B.1.

4.9 Economics of Cloud Computing

Due to the limitation in number of pages, the discussion is being produced as online Appendix B.2.

4.10 Application Development and Delivery

Due to the limitation in number of pages, the discussion is being produced as online Appendix B.3.

4.11 Data Management

Due to the limitation in number of pages, the discussion is being produced as online Appendix B.4.

4.12 Networking

Due to the limitation in number of pages, the discussion is being produced as online Appendix B.5.

4.13 Usability

There are several opportunities to enhance usability in Cloud environments. For instance, it is still
hard for users to know how much they will spend renting resources due to workload/resource
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fluctuations or characteristics. Tools to have better estimations would definitely improve user ex-
perience and satisfaction. Due to recent demands from Big Data community, new visualization
technologies could be further explored on the different layers of Cloud environment to better un-
derstand infrastructure and application behaviour and highlight insights to end users. Easier API
management methodologies, tools, and standards are also necessary to handle users with different
levels of expertise and interests. User experience when handling data-intensive applications also
needs further studies considering their expected QoS.

In addition, users are still overloaded with resource and service types available to run their appli-
cations. Examples of resources and services are CPUs, GPUs, network, storage, operating system
flavour, and all services available in the PaaS. Advisory systems to help these users would greatly
enhance their experience consuming Cloud resources and services. Advisory systems to also rec-
ommend how users should use Cloud more efficiently would certainly be beneficial. Advices such
as whether data should be transferred or visualized remotely, whether resources should be allo-
cated or deleted, whether baremetal machines should replace virtual ones are examples of hints
users could receive to make Cloud easier to use and more cost-effective.

The main difficulty in this area lies on evaluation. Traditionally, Cloud computing researchers
and practitioners mostly perform quantitative experiments, whereas researchers working closer to
users have deep knowledge on qualitative experiments. This second type of experiments depends
on selecting groups of users with different profiles and investigating how they use technology.
As Cloud has a very heterogeneous community of users with different needs and skills and work
in different Cloud layers (IaaS, PaaS, and SaaS), such experiments are not trivial to be designed
and executed at scale. Apart from understanding user behaviour, it is relevant to develop mecha-
nisms to facilitate or automatically reconfigure Cloud technologies to adapt to the user needs and
preferences, and not assume all users have the same needs or have the same level of skills.

4.14 Discussion

As can be observed from the emerging trends and proposed future research directions (summarised
in the outer ring of Figure 3), there will be significant developments across all the service models
(IaaS, PaaS, and IaaS) of Cloud computing.

In the IaaS there is scope for heterogeneous hardware such as CPUs and accelerators (e.g., GPUs
and TPUs) and special purpose Clouds for specific applications (e.g., HPC and deep learning). The
future generation Clouds should also be ready to embrace the non-traditional architectures, such
as neuromorphic, quantum computing, adiabatic, nanocomputing, and so on. Moreover, emerging
trends such as containerisation, SDN and Fog/Edge computing are going to expand the research
scope of IaaS by leaps and bounds. Solutions for addressing sustainability of CDC through utilisa-
tion of renewable energy and IoT-enabled cooling systems are also discussed. There is also scope
for emerging trends in IaaS, such as disaggregated data centres where resources required for the
computational tasks such as CPU, memory and storage, will be built as stand-alone resource blades,
which will allow faster and ideal resource provisioning to satisfy different QoS requirements of
Cloud based applications. The future research directions proposed for addressing the scalability,
resource management and scheduling, heterogeneity, interconnected Clouds and networking chal-
lenges, should enable realising such comprehensive IaaS offered by the Clouds.

Similarly, PaaS should see significant advancements through future research directions in re-
source management and scheduling. The need for programming abstractions, models, languages
and systems supporting scalable elastic computing and seamless use of heterogeneous resources
are proposed leading to energy-efficiency, minimised application engineering cost, better porta-
bility and guaranteed level of reliability and performance. It is also foreseeable that the ongo-
ing interest for ML, deep learning, and AI applications will help in dealing with the complexity,
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Fig. 3. Future research directions in the Cloud computing horizon.

heterogeneity, scale and load balancing applications developed through PaaS. Serverless comput-
ing is an emerging trend in PaaS, which is a promising area to be explored with significant practical
and economic impact. Interesting future directions are proposed such as function-level QoS man-
agement and economics for serverless computing. In addition, future research directions for data
management and analytics are also discussed in detail along with security, leading to interesting
applications with platform support such as edge analytics for real-time stream data processing,
from the IoT and smart cities domains.

SaaS should mainly see advances from the application development and delivery, and usabil-
ity of Cloud services. Translucent programming models, languages, and APIs will be needed to
enable tackling the complexity of application development while permitting control of applica-
tion delivery to future-generation Clouds. A variety of agile delivery tools and Cloud standards
(e.g., TOSCA) are increasingly being adopted during Cloud application development. The future
research should focus at how to continuously monitor and iteratively evolve the design and quality
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of Cloud applications. It is also suggested to extend DevOps methods and define novel program-
ming abstractions to include within existing software development and delivery methodologies, a
support for IoT, Edge computing, Big Data, and serverless computing. Focus should also be at de-
veloping effective Cloud design patterns and development of formalisms to describe the workloads
and workflows that the application processes, and their requirements in terms of performance, re-
liability, and security are strongly encouraged. It is also interesting to see that even though the
technologies have matured, certain domains such as mobile Cloud, still have adaptability issues.
Novel incentive mechanisms are required for mobile Cloud adaptability as well as for designing
Fog architectures.

Future research should thus explore Cloud architectures and market models that embrace
uncertainties and provide continuous “win-win” resolutions, for all the participants including
providers, users and intermediaries, both from the Return On Investment (ROI) and satisfying
SLA perspectives.

5 SUMMARY AND CONCLUSIONS

The Cloud computing paradigm has revolutionised the computer science horizon during the past
decade and enabled emergence of computing as the fifth utility. It has emerged as the backbone of
modern economy by offering subscription-based services anytime, anywhere following a pay-as-
you-go model. Thus, Cloud computing has enabled new businesses to be established in a shorter
amount of time, has facilitated the expansion of enterprises across the globe, has accelerated the
pace of scientific progress, and has led to the creation of various models of computation for per-
vasive and ubiquitous applications, among other benefits.

However, the next decade will bring about significant new requirements, from large-scale het-
erogeneous IoT and sensor networks producing very large datastreams to store, manage, and anal-
yse, to energy- and cost-aware personalised computing services that must adapt to a plethora of
hardware devices while optimising for multiple criteria including application-level QoS constraints
and economic restrictions. These requirements will be posing several new challenges in Cloud
computing and will be creating the need for new approaches and research strategies, and force
us to re-evaluate the models that were already developed to address the issues such as scalability,
resource provisioning, and security.

This comprehensive manifesto brought the advancements together and proposed the challenges
still to be addressed in realising the future generation Cloud computing. In the process, the man-
ifesto identified the current major challenges in Cloud computing domain and summarised the
state of the art along with the limitations. The manifesto also discussed the emerging trends and
impact areas that further drive these Cloud computing challenges. Having identified these open
issues, the manifesto then offered comprehensive future research directions in the Cloud comput-
ing horizon for the next decade. The discussed research directions show a promising and exciting
future for the Cloud computing field both technically and economically, and the manifesto calls
the community for action in addressing them.
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